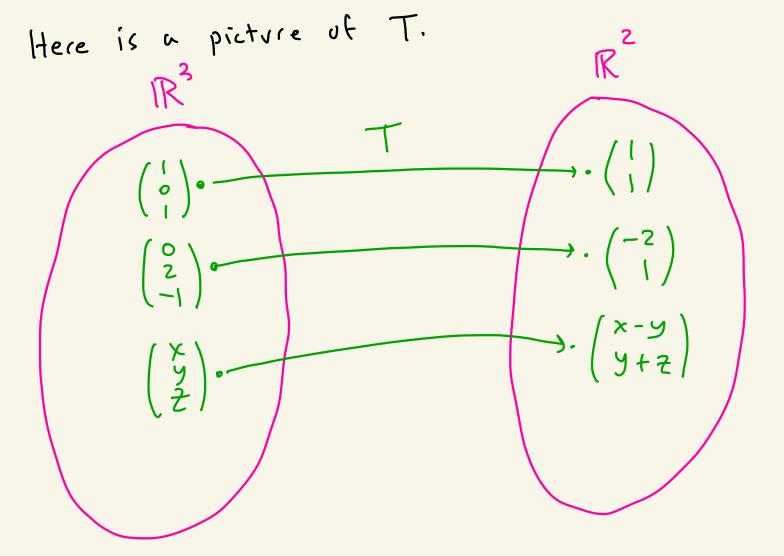
Topic 8-Linear Transformations and Eigenvalues

Def: Given two sets A and B
a function
$$f$$
 from A to B
is a rule that assigns to each x in
A a unique element $f(x)$ in B.
We write $f: A \rightarrow B$.
We write $f: A \rightarrow B$.
We write $f: A \rightarrow B$.

$$\begin{array}{l} \underbrace{\mathsf{Ex:}}_{\mathsf{Consider}} & \operatorname{T:} \stackrel{3}{\mathbb{R}} \longrightarrow \stackrel{2}{\mathbb{R}}^{2} \text{ given} \\ \underbrace{\mathsf{by}}_{\mathsf{by}} & \operatorname{T} \begin{pmatrix} \mathsf{x} \\ \mathsf{z} \end{pmatrix} = \begin{pmatrix} \mathsf{x} - \mathsf{y} \\ \mathsf{y} + \mathsf{z} \end{pmatrix} \\ \underbrace{\mathsf{Some}}_{\mathsf{calculations}} & \underbrace{\mathsf{vsing}}_{\mathsf{tare}} & \operatorname{Tare} \\ \\ & \operatorname{T} \begin{pmatrix} \mathsf{b} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{l} - \mathsf{o} \\ \mathsf{d} - \mathsf{l} \end{pmatrix} = \begin{pmatrix} \mathsf{l} \\ \mathsf{l} \end{pmatrix} \\ \underbrace{\mathsf{T} \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix}}_{\mathsf{c}} = \begin{pmatrix} \mathsf{o} - \mathsf{z} \\ \mathsf{c} - \mathsf{l} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \\ \mathsf{c} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{c} \\$$



Note that

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ y + z \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
So another formula for T is

$$T(\vec{v}) = A\vec{v}$$

$$T(\vec{v}) = A\vec{v}$$

where $A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} and b \mid 2$

$$\frac{\text{Def: A linear transformation}}{T: \mathbb{R}^n \to \mathbb{R}^n \text{ is a function of the}}$$

$$\frac{\text{Tirres R}^n \to \mathbb{R}^n \text{ is a function of the}}{\text{furm } T(\vec{v}) = A\vec{v} \text{ where } A \text{ is an } mxn}$$

$$\frac{\text{matrix multiplication}}{\text{where you think of}}$$

Ex: Our first example above

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $T\left(\frac{x}{2}\right) = \begin{pmatrix} x-y \\ y+z \end{pmatrix}$
is a linear transformation since
 $T\left(\frac{x}{2}\right) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ as we
derived above.

Note: When we defined $T(\vec{y}) = A\vec{v}$ we Mean \vec{v} is in standard coordinates. Later We will talk about how to change A to We will talk about how to change A.

Theorem: Let T:
$$\mathbb{R}^n \to \mathbb{R}^m$$
 be a linear
transformation. Then
 $\bigcirc T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$
and $\textcircled{O} T(\vec{v} + \vec{w}) = \vec{v} + \vec{v}$
for every scalar \vec{v} and vectors \vec{v}, \vec{w} in \mathbb{R}^n
for every scalar \vec{v} and vectors \vec{v}, \vec{w} in \mathbb{R}^n
for every scalar \vec{v} and vectors \vec{v}, \vec{w} in \mathbb{R}^n
for every scalar \vec{v} and vectors \vec{v}, \vec{w} in \mathbb{R}^n
for every scalar \vec{v} and vectors \vec{v}, \vec{w} in \mathbb{R}^n
for every scalar \vec{v} and vectors \vec{v}, \vec{w} that
conversely, a function $T: \mathbb{R}^n \to \mathbb{R}^m$ where $T(\vec{v}) = A\vec{v}$
proof: Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ where $T(\vec{v}) = A\vec{v}$
 $T(\vec{v} + \vec{w}) = A(\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = T(\vec{v}) + T(\vec{\omega})$
 $\textcircled{O} T(\vec{v} + \vec{w}) = A(\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = T(\vec{v}) + T(\vec{\omega})$
 $\textcircled{O} T(\vec{v} + \vec{w}) = A(\vec{v} \cdot \vec{v}) = \alpha(A\vec{v}) = \alpha T(\vec{v})$
Conversely suppose T satisfies $\textcircled{O} \neq 2$.
Let $\vec{e}_{\vec{v}}, \vec{f}_{\vec{v}}$ be the standard bases for $\mathbb{R}^n \notin \mathbb{R}^n$
Suppose $T(\vec{e}_{\vec{v}}) = a_{\vec{v}}, f_{\vec{v}} + a_{\vec{w}}, f_{\vec{v}}$.

$$T\begin{pmatrix} X_{1} \\ X_{2} \\ X_{r} \end{pmatrix} = \begin{pmatrix} G_{11} & G_{12} & \dots & G_{1n} \\ G_{21} & G_{22} & \dots & G_{2n} \\ \vdots & \vdots & \vdots \\ G_{m1} & G_{m2} & \dots & G_{mn} \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ \vdots \\ Y_{n} \end{pmatrix}$$

Ex: Suppose
$$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$
 is
a linear transformation and you
Know that $T(\binom{1}{0} = \binom{2}{1}$ and $T(\binom{0}{1} = \binom{-11}{3})$
Find A where $T(\overrightarrow{x}) = A\overrightarrow{x}$.
Note that
 $T(\overset{x}{y}) = T(\binom{x}{0} + \binom{0}{y})$
 $= T(\binom{x}{0} + T(\overset{0}{y}))$
 $= T(\binom{x}{0} + T(\overset{0}{y}))$
 $= T(\binom{1}{0} + yT(\overset{0}{1}))$
 $= xT(\binom{1}{0} + yT(\overset{0}{1}))$
 $= xT(\binom{1}{0} + yT(\overset{0}{1}))$
 $= (\binom{2x-y}{x+3y}) = (\binom{2}{1} - \binom{1}{3})(\overset{x}{y})$
So, $T(\overrightarrow{x}) = A\overrightarrow{x}$ where $A = (\binom{2-1}{1})(\overset{x}{y})$

Sometimes we want to find a basis
that simplifies a linear transformation.
One way to do this is to try to find
the "eigenvalues" and "eigenvectors"
of a linear transformation.
These are when
$$T(\vec{v}) = \lambda \vec{v}$$

where λ is a number.
Here we will only look at
 $T(\vec{v}) = A\vec{v}$ where A is a square
 $T(\vec{v}) = A\vec{v}$ where A is a square
 $n \times n$ matrix.

Def: Let T:
$$\mathbb{R}^n \to \mathbb{R}^n$$
 be a linear
transformation be defined by $T(\vec{v}) = A\vec{v}$
where A is an nxn matrix.
Suppose that \vec{v} is a vector in \mathbb{R}^n with
 $\vec{v} \neq \vec{o}$
and $(\vec{v} \neq \vec{o})$
and $(\vec{v} = \lambda \vec{v})$
for some scalar λ in \mathbb{R} .
Then, λ is called an eigenvalue of
T and \vec{v} is called an eigenvector
of T corresponding to λ .
Given an eigenvalue λ of T, the
eigenspace of T corresponding to λ is
 $E_{\lambda}(T) = \{\vec{v} \mid T(\vec{v}) = \lambda \vec{v}\}$
 $= \{\vec{v} \mid A\vec{v} = \lambda \vec{v}\}$

Note: $E_{\lambda}(T)$ consists of all eigenvectors corresponding to λ and also includes \vec{O} to make it a subspace. <u>Note:</u> If $A\vec{v} = \lambda\vec{v}$ where $\vec{v} \neq \vec{o}$ we also call λ an eigenvalue of A and \vec{v} an eigenvector of Aand write $E_{\lambda}(A) = \{\vec{v} \mid A\vec{v} = \lambda\vec{v}\}$

Ex: Let
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$
. Let $T : IR^2 \rightarrow IR^2$
be defined by
 $T(\frac{x}{y}) = A(\frac{x}{y}) = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10x - 9y \\ 4x - 2y \end{pmatrix}$
Note that
 $T(\frac{3}{2}) = \begin{pmatrix} 10 \cdot 3 - 9 \cdot 2 \\ 4 \cdot 3 - 2 \cdot 2 \end{pmatrix}$
 $= \begin{pmatrix} 30 - 18 \\ 12 - 4 \end{pmatrix}$
 $= \begin{pmatrix} 12 \\ 8 \end{pmatrix}$
 $= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Thus,

$$T\left(\frac{3}{2}\right) = 4 \cdot \left(\frac{3}{2}\right) \qquad T(\vec{v}) = \lambda \vec{v}$$

$$A \vec{v} = \lambda \vec{v}$$
So, $\vec{v} = \left(\frac{3}{2}\right)$ is an
eigenvector of T with
eigenvalue $\lambda = 4$.

How do we find the eigenvalues a linear transformation T? That is, of an nxn matrix A?

Suppose λ is an eigenvalue of A and x = 3 is an eigenvector associated with X. Then, $A \dot{x} = \lambda \dot{x}$. vsing $\left| \right| I_n \vec{x} = \vec{x}$ So, $A \times - \lambda \times = 0$. E Then, $(A - \lambda T_n) \stackrel{\rightarrow}{\chi} = 0$ where In is the nxn identity matrix.

So, $(A - \lambda T_n) \overrightarrow{x} = 0$ where $\overrightarrow{x} \neq \overrightarrow{0}$. The only way this can happen is if $A - \lambda T_n$ has no inverse. Why? | Let $B = A - \lambda I_{\Lambda}$. If B'existed then since BX=0 you would get BBX=B0 which would give $\vec{X} = \vec{0}$. But x ≠ 0. So, B'does not exist

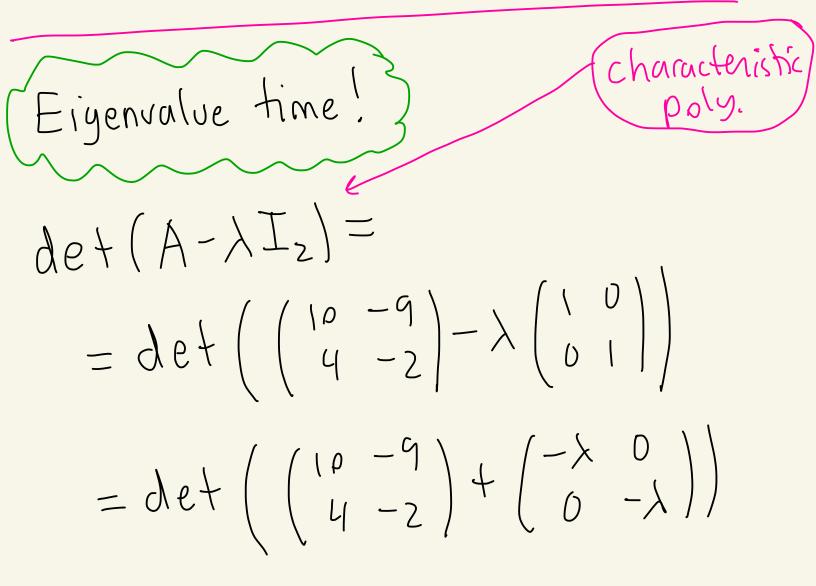
Thus, $det(A - \lambda I_n) = 0$ since $(A - \lambda I_n)^{-1} does not$ exist.

Summary: The eigenvalues of A satisfy the equation $de+(A-\lambda I_n)=0.$ Called the characteristic polynomial of A

Note: Hencefurth we will just say eigenvalues/eigenvectors of A instead of T since its the sume.

Ex: (HW problem)
Let
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$

Let's find the eigenvalues of A



$$= \det \begin{pmatrix} 10 - \lambda & -9 \\ 4 & -2 - \lambda \end{pmatrix}$$

$$= (10 - \lambda)(-2 - \lambda) - (-9)(4)$$

$$= -20 - 10 \lambda + 2\lambda + \lambda^{2} + 36$$

$$= \lambda^{2} - 8\lambda + 16$$

$$= (\lambda - 4)(\lambda - 4)$$

$$= (\lambda - 4)(\lambda - 4)$$
The eigenvalues of A are when $(\lambda - 4)^{2} = 0$.
Thus, the only eigenvalue of A is $\lambda = 4$.

Facts/Defs Let A be an nxn matrix. Let X be eigenvalue of A. () The eigenspace $E_{\lambda}(A)$ is a subspace of IR". (2) The dimension of E₁(A) is called the geometric multiplicity of λ . (3) The algebraic multiplicity of A is the multiplicity of A as a root of the characteristic polynomial of A. $\left(\begin{array}{c} \text{geometric multiplicity}\\ \text{ot } \lambda\end{array}\right) \leq \left(\begin{array}{c} \text{algebraic}\\ \text{multiplicity}\\ \text{ot } \lambda\end{array}\right)$ (4)

Ex: Let $A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$ be as in the previous example. We had that the characteristic poly of A was $det (A - \lambda I) = (\lambda - 4)^{2}$ Thus, $\lambda = 4$ is an eigenvalue with algebraic multiplicity of 2. Let's now find the eigenvectors Corresponding to X=4.

Let's get a basis for

$$E_{4}(A) = \{ \vec{x} \mid A \vec{x} = 4 \vec{x} \}$$

Need to solve $A \vec{x} = 4 \vec{x}$.
Let's solve!
 $\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 4 \begin{pmatrix} a \\ b \end{pmatrix} \bigstar \vec{x} = 4 \vec{x}$.
 $\begin{pmatrix} 10a - 9b \\ 4a - 2b \end{pmatrix} = \begin{pmatrix} 4a \\ 4b \end{pmatrix}$
 $\begin{pmatrix} 6a - 9b \\ 4a - 6b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
This gives:
 $6a - 9b = 0$

Solving:

$$\begin{pmatrix} 6 & -9 & 0 \\ 4 & -6 & 0 \end{pmatrix} \xrightarrow{\frac{1}{6}R_1 \to R_1} \begin{pmatrix} 1 & -\frac{3}{2} & 0 \\ 4 & -6 & 0 \end{pmatrix}$$

 $-\frac{4R_1 + R_2 \to R_2}{2} \begin{pmatrix} 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$

So we get:

$$\alpha - \frac{3}{2}b = 0$$
 leading: α
 $0 = 0$ free: b

Solutions:

$$b = t$$

 $a = \frac{3}{2}b = \frac{3}{2}t$

Thus if \vec{x} solves $A\vec{x} = 4\vec{x}$ then $\vec{x} = \begin{pmatrix} G \\ B \end{pmatrix} = \begin{pmatrix} 3/2 & t \\ t \end{pmatrix} = t \begin{pmatrix} 3/2 \\ l \end{pmatrix}$

Thus, a basis for Ey(A) is $\begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$. Thus, $\lambda = 4$ has geometric multiplicity $dim(E_{Y}(A)) = 1$ Summary table for A Geometric basis for 919. eigenvulve mult. $E_{\lambda}(A)$ mult. of λ of X λ $\begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$ $\lambda = 4$

What does it mean that
$$\binom{3/2}{1}$$
 is a
basis for the eigenspace for $\lambda = 4$?
It means you can get all the eigenvector
for $\lambda = 4$ by scaling $\binom{3/2}{1}$ by a
Non-zero number.
 $\frac{1}{1} \binom{3/2}{1}$
 $\frac{1}{\binom{3/2}{2}}$
 $\frac{-2}{\binom{-3}{-2}}$
 $\frac{6}{\binom{5}{6}}$

You can calculate t = 0 which gives $0 \cdot \binom{3/2}{1} = \binom{0}{2}$ which is in Eq(A) but it isn't an eigenvector

Ex: Let $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$

Find the eigenvalues, bases for the eigenspaces, and algebraic/geometric multiplicities uf the eigenvalues.

Eigenvalue time! $det(A-\lambda I_2) = det\left(\begin{pmatrix}3 & 0\\8 & -1\end{pmatrix}-\lambda\begin{pmatrix}0 & 1\\0 & 1\end{pmatrix}\right)$ $= \det\left(\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} + \begin{pmatrix} -\lambda & 0 \\ 0 & -\lambda \end{pmatrix}\right)$ $= \det \begin{pmatrix} 3-\lambda & 0\\ 8 & -1-\lambda \end{pmatrix}$

 $= (3-\lambda)(-(-\lambda)) - (0)(8)$ $= (3 - \lambda) (-(-\lambda))$ $= \left[-(\lambda - 3)\right] \left[-(\lambda + 1)\right]$ $= \left(\lambda - 3 \right) \left(\lambda + 1 \right)^{\epsilon}$ And $(\lambda - 3)(\lambda + 1) = 0$ when $\lambda = 3, -1$. So the eigenvalues are $\lambda = 3, -1$. The algebraic multiplicity uf both eigenvalues is l, -Let's find a basis for the

eigenspace
$$E_{3}(A)$$
 for $\lambda = 3$.
Need to solve $A\vec{x} = 3\vec{x}$.
Need to solve
 $\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ b \end{pmatrix} = 3 \begin{pmatrix} \alpha \\ b \end{pmatrix} + A\vec{x} = 3\vec{x}$
 $\begin{pmatrix} 3\alpha \\ 8\alpha - b \end{pmatrix} = \begin{pmatrix} 3\alpha \\ 3b \end{pmatrix}$
 $\begin{pmatrix} 0 \\ 8\alpha - 4b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Need to solve
 $8\alpha - 4b = 0$
 $0 = 0$
 $1eading: \alpha$
Free: b

Solution:

$$b = t$$

$$\alpha = \frac{1}{2}b = \frac{1}{2}t$$
So, if \vec{x} solves $A\vec{x} = 3\vec{x}$ then
 $\vec{x} = \begin{pmatrix} 0 \\ b \end{pmatrix} = \begin{pmatrix} 1/2 \\ t \end{pmatrix} = t \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}$
Thus α basis for $E_3(A)$ is
 $\begin{pmatrix} 1/2 \\ 1 \end{pmatrix}$ and so $\lambda = 3$ has
geometric multiplicity
 $dim(E_3(A)) = 1$

$$\frac{1}{t + vectors}$$
in basis

Let's now find a basis for the eigenspace E. (A) for $\lambda = -[$. We need to solve $A \stackrel{\rightarrow}{X} = - \stackrel{\rightarrow}{X}$. Need to solve $\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 9 \\ b \end{pmatrix} = -\begin{pmatrix} 9 \\ b \end{pmatrix} 4 \begin{pmatrix} 7 \\ A \\ X = -X \end{pmatrix}$ $\begin{pmatrix} 3\alpha \\ 8\alpha - b \end{pmatrix} = \begin{pmatrix} -\alpha \\ -b \end{pmatrix}$ $\begin{pmatrix} 4a \\ 8a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

This becomes

$$\begin{aligned} 4a &= 0\\ 8a &= 0 \end{aligned}$$

$$\begin{pmatrix} 4 & 0 & 0\\ 8 & 0 & 0 \end{pmatrix} \xrightarrow{l} \frac{l}{4} R_{1} \Rightarrow R_{1} \\ \xrightarrow{l} \frac{l}{8} & 0 & 0 \end{pmatrix} \xrightarrow{l} \begin{pmatrix} 1 & 0 & 0\\ 8 & 0 & 0 \end{pmatrix} \xrightarrow{l} \begin{pmatrix} 0 & 0\\ 8 & 0 & 0 \end{pmatrix} \xrightarrow{l} \begin{pmatrix} 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

So we get

$$a = 0$$
 leading; a
 $b = 0$ free; b

Solution:
$$b = t$$

 $\alpha = 0$

So, if
$$\vec{x}$$
 solves $A\vec{x} = -\vec{x}$ then
 $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ t \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
So a basis for $E_{-1}(A)$
is $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and so $\lambda = -1$
has geometric mult. dim $(E_{-1}(A)) = 1$
has geometric mult. dim $(E_{-1}(A)) = 1$
 $\vec{x} = 1$
Summary for $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$
vectors
in
basis for geometric
mult.
 $\vec{x} = 3$
 $\vec{x} = 3$
 $\vec{x} = 1$
 $\vec{x} = 1$
 $\vec{x} = -1$
 $\vec{x} = -1$

Ex: Let $A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ Let's find the eigenvalues of A. We need to solve det $(A - \lambda I_3) = 0$ because A is 3×3

We have $det(A - \lambda I_3)$ $= \det \left(\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$ A $\pm z$ $= det \left(\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \right)$ $= \det \begin{pmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 0 & 3-\lambda \end{pmatrix}$ $\begin{array}{c} \text{expand} \\ \text{on} \\ \text{column Z} \end{array} \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$

 $= -\left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2}\right) \left| \frac{-\lambda}{1} - \frac{-2}{3} \right| = 0$ $\begin{pmatrix} -\lambda & -2 \\ + & -2 \\ - & -2 \\ + & -2 \\ - & -2$ $= (2 - \lambda) \begin{vmatrix} -\lambda & -2 \\ \lambda & 3 - \lambda \end{vmatrix}$ $= (2 - \lambda) \left[(-\lambda)(3 - \lambda) - (1)(-2) \right]$ $=(2-\lambda)(\lambda^2-3\lambda+2)$ $= (2-\lambda)(\lambda-1)(\lambda-2)$ $= - (\gamma - 5) (\gamma - 1) (\gamma - 5)$ $= - \left(\lambda^{-2} \right)^{z} \left(\lambda^{-1} \right)$ $\lambda = 2$ has alg. Mult. 2 X=1 has alg. The eigenvalues are $\lambda = 2, 1$. mult. 1.

Let's find the eigenvectors of A. Let's start with $\lambda = 1$, Let's find a basis for $E_{1}(A) = \{ \vec{x} \mid A \vec{x} = | \cdot \vec{x} \}$ The equation $A \stackrel{\rightarrow}{\times} = [\cdot \stackrel{\rightarrow}{\times} becomes$ $\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 9 \\ b \\ c \end{pmatrix} = \int \begin{pmatrix} 9 \\ b \\ c \end{pmatrix}$ $A = 1 \cdot X$ This becomes $\begin{pmatrix} 0a+0b-2c \\ a+2b+c \\ a+0b+3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

This gives
$$\begin{pmatrix} -2c \\ a+2b+c \\ a & +3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This gives $\begin{pmatrix} -a & -2c \\ a & +b+c \\ a & +2c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

So,
$$-\alpha - 2c = 0$$

 $\alpha + b + c = 0$
 $\alpha + 2c = 0$

Solving we get

$$\begin{pmatrix} -1 & 0 & -2 & | & 0 \\ 1 & 1 & 1 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix} \xrightarrow{-R_1 \to R_1} \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 1 & 1 & 1 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{-R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We get

$$\alpha + 2c = 0$$
 (1) (leading: a,b)
 $b - c = 0$ (2) (ree: c, c)
 $0 = 0$ (3)

Solving C= 大 b=c=t $\int \alpha = -2c = -2t$ Thus, if $\vec{X} = \begin{pmatrix} q \\ 5 \\ c \end{pmatrix}$ is in $E_1(A)$ then $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2t \\ t \\ t \end{pmatrix} = t \begin{pmatrix} -2t \\ l \\ l \end{pmatrix}$ So, $\begin{pmatrix} -2\\ 1 \end{pmatrix}$ is a basis for $E_1(A)$ $dim(E_1(A)) = 1$ Thus,

Let's now find a basis for $E_z(A) = \underbrace{\exists \forall A \\ x = 2 \\ x \end{bmatrix}$ Want to solve Ax=2x. So need to solve

$$\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} \alpha \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} \alpha \\ b \\ c \end{pmatrix} = -Ax = 2x$$
$$\begin{pmatrix} -2c \\ \alpha + 2b + c \\ \alpha + 3c \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 2b \\ 2c \end{pmatrix}$$
$$\begin{pmatrix} -2\alpha & -2c \\ \alpha + c \\ \alpha + c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

This gives

$$\begin{array}{ccc} -2a & -2c = 0 \\ a & +c = 0 \\ a & +c = 0 \end{array}$$

$$\begin{pmatrix} -2 & 0 & -2 & | & 0 \\ | & 0 & | & | & 0 \\ | & 0 & | & | & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} | & 0 & | & 0 \\ -2 & 0 & -2 & | & 0 \\ | & 0 & | & | & 0 \end{pmatrix}$$

$$\frac{ZR_1 + R_2 \rightarrow R_2}{-R_1 + R_3 \rightarrow R_3} \begin{pmatrix} | & 0 & | & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

This gives:

$$\begin{array}{cccc}
\alpha & +c &= 0 \\
& 0 &= 0 \\
& 0 &= 0
\end{array}$$

leading: a free: c, b

Solution: b = t c = ua = -c = -u

Thus, if x solves Ax=2x then

$$\vec{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -u \\ t \\ u \end{pmatrix}$$
$$= \begin{pmatrix} -u \\ 0 \\ u \end{pmatrix} + \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}$$
$$= u \begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ i \\ 0 \end{pmatrix}$$
So all solutions of $A\vec{x} = 2\vec{x}$ are linear combinations of $\begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ i \\ 0 \end{pmatrix}$.
Thus, $\begin{pmatrix} -i \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ span the eigenspace $E_2(A)$.
You can verify that $\begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Thus,
$$\left(\frac{1}{2}\right)_{1}\left(\frac{1}{2}\right)_{1}\left(\frac{1}{2}\right)_{1}$$
 is a basic for
 $E_{2}(A)_{1}$, So, $\lambda = 2$ has
geometric multiplicity
 $\dim(E_{2}(A)) = 2$.
Summary table for A:

Eigenvalue 1	alg.mult. of X	basis for EX(A)	geometric muilt,
$\sum_{i=1}^{n}$		$\begin{pmatrix} -2 \\ l \\ l \end{pmatrix}$	
$\lambda = Z$	Z	$ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} $	Z